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1. Introduction 

There are some well-known results on the problem of constructing Artinian Gorcn- 

stein algebras having an assigned set of graded Betti numbers which are possible 

for some Artinian Gorenstein algebra of codimension three. We recall some of these 

results. An explicit construction can be found in the paper by Hcrzog et al. [S, 

p. 631 and the paper by Diesel [3, Proposition 3. I]. Furthermore, recently, Geramita 

and Migliore [5. Theorem 2.11 showed that any admissible set of graded Betti numbers 

in fact occur for a reduced set of points in P’. The starting point of these constructions 

is the well-known structure theorem of Buchsbaum and Eisenbud [I. Theorem 2.11 for 

Gorenstein ideals of height three. 

It is a standard fact in linkage theory [IO, Remarque 1.41 that the sum of two gc- 

omctrically linked Cohen-Macaulay ideals is a Gorenstein ideal of codimension one 

greater. In this paper. using this idea, we give a new construction of Artinian Goren- 

stein algebras achieving all possible sets of graded Betti numbers fol- codimension 

three. That is. such Artinian Gorenstein algebras can be obtained as the sum of the 
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ideals of two geometrically linked finite sets of points in P’ (Theorem 3.3). Further- 

more, as an application of this construction, we show that for any Artinian Gorenstein 

algebra of codimension three, there exists an Artinian Gorenstein algebra with the 

weak Stanley property which has the same Hilbert function (Theorem 4.3 and Remark 

4.6). Consequently, we give another proof of the well-known theorem of Stanley [ 1 I, 

Theorem 4.21 which gave a characterization of the Hilbert functions of codimension 

three Artinian Gorenstein algebras (Theorem 4.5 ). 

2. Preliminaries 

Throughout this paper. we assume that X is always an infinite tield. Let A be a stan- 

dard graded algebra over a field li. that is, A is a graded ring @j,>() A, satisfying A0 = k, 

A = k[Al] and dimk Al < x. The Hillwt ,fiurctior7 of A is defined by H(A, i) = dimi A, 

for all i > 0, and the Hihrt .wric,.s of A is defined by F(A.2) = xi>0 H(A. i);,’ t 

Z[[;~]]. Then it is well known that we can write F(,4,R) in the folm 

for certain integers lz~, hi,. . , Ir,. satisfying I:__,, 17, -f 0 and h, # 0. where d is the Krull- 

dimension of A. We put (T(A)=c. + I, In particular, it follows that if A is Artinian, 

then cr(A)=Min{iIA;=(O)}. 

First, we recall some basic facts on the Hilbcrt functions of finite sets of points in P”. 

Let X be a finite set of points in P” and let I(X) c R = k[.q,xl.. ,.I-,,] be the homo- 

geneous ideal of X. The flilbert function of X is defined by H(X,i)= H(R/Z(X),i) 

for all i > 0, the Hilbert series of‘ .Y is defined by F(X,i) = F(R/f(X),i) and put 

a(X) = o(R/I(X)). Now. since A = /?/I(X) = @, crz4; is a one-dimensional Cohen- 

Macaulay graded algebra over an infinite field, thcrc exists an element I E Al which 

is a non-zero divisor. Using this fact, it is easy to show the following (see [2], for 

example). 

Lemma 2.1. Let X hr LI ,fir7itcJ .sc’t of’poi77t.s iii P”. 

(1 ) H(X, i) < H(X, i + I ) ,fiw o/l i 2 0. 

(2) !f’H(X, i + I ) = H(X, i), t/w/r /-/(A’, i t- 2) = /-I(X, i + I ). 

(3) H(X,i)= 1x1 ,fi)r- trll i> 0. ~~hcw~ 1x1 rkcwotc~s the rudwr of’points in X 
(4) o(X)=Min{iIH(X.i)=1,Y~) -t- I. 

If I(X) = (FI, , F,,) for some iv’, E R,/, ( 1 5 i 5 II ), then X is said to be compktc 

intctxcctiotz of’tJypc> (dl,. . ,cl,,). The following is also a well-known fact (see [2,1 I]). 

Lemma 2.2. Let X he (I cof7lpktc~ ilrtc~r’scc~tion qf tj,pc (cl 1 . . . d,, ) 

(1) F(X,i)=(nIl,(l Pi”8))!((I ~~~.)““). 

(2) a(X)=d, + ‘.’ + CI,, ~ (I2 - 1 ). 



Next, we recall some well-known facts on the graded Betti numbers of codimension 

three Gorenstein algebras. 

When I is a Gorenstein homogeneous ideal of height three in R = k[r+sl.. ,_r,,]. it 

is well known that a minimal graded free resolution of A = R,‘I has the form 

?,fl + I hf I 

0- R(p.s)- @R(-Pi)+ @ R(-4,)~R(O)+A-0. 
I-I r=l 

where we always assume that yi 5 5 qz,,,+, and !ll > > /T~,,~_, The set of 

integers 

{ y I . , y7,,1+ I ; p, , . jb, i 1 ; .s ) 

is uniquely determined by A, which we call the <JYU/V(/ Betti HLU~~~JKY of il. In particu- 

lar, we put .s(A ) = s. Furthermore. we define a new sequence {t*r.. , 1-7,,,+1 } of integers, 

where 

I; = [I, - q, for all I 5 i 5 2n1 + 1. 

We call these integers the tlitrqomrl t/~~qwc~.v of ‘4 (cf. [ 1. 31 ). 

It follows from [l, p. 4661 that the diagonal degrees of A completely determine the 

graded Betti numbers of A. that is. 
7111+ I 

(BEI 1 s= 1 I;, 
,-I 

(BE21 q, = ;(s - r,) = ; C+ 
i# 

(BE31 y, =s ~ q, = i(.s + I-,), 

Furthermore, it is well known that the diagonal degrees {Y,} of A satisfy the following 

three conditions (see [3, Proposition 3.11, for example): 

(Dl) 1’1 >Yz> .‘. >i&+,, 

(D2) the integers I’; are all even or all odd, 

(D3) 71 > 0, I’? + I’z,,, 1 1 > 0, 1’3 + 1’1,,f > 0. , I’,,,+, + I.,),+? > 0. 

Conversely, any sequence of integers satisfyin g the conditions (Dl )-(D3) is the 

diagonal degrees of a height three Gorenstein ideal. This well-known fact follows, for 

example, from [3. Proposition 3.1: 5, Theorem 2.1; 8. Section 51. 

3. The construction 

We prepare the following notation and definitions to state the Main Theorem 3.3 of 

this section. 

Let R=k[.r.~~,z] be the homogeneous coordinate ring of P’. Here we consider the 

following finite sets of points which are in position of lattice points in P’. 



Definition 3.1. (I ) A finite set X of points in P’ is called a husk cmfiyurution of’ 

type (d,e) if there exist distinct clcments h,.c, in li such that 

We write X = B(d,c). Obviously. B(c/,e) is complete intersection and jB(d,e)l =cie. 

(2) A finite set X of points in P’ is called a purr cmfiyurution if there exist 

finite basic configurations &t/r, el ). . . f?(~/,,~,e,,, ), where et > >e ,,,, which satisfy 

the following three conditions: 

(i) B(u’,,ej) fIB(d,,e,)= C/I if ijI,j, 

(ii) X=B(dl.rl)U..‘UB(d,,,,cJ,,,), 

(iii) cp(B(d;,e,))~cp(B(d,+~,e,+~ ))forall l<i<nz-1,whereq:P2\{(1,0,0)}+P’ 

is the map defined by sending the point (.u,v,z) to the point (y,z). 

In this case, we write X = IJ:“, B(tl,,e,). 

Definition 3.2. Let (1.1.. . ,Q,,,+I } be a sequence of integers satisfying conditions 

(Dl )-(D3). Then we define the following integers: 

d, = +(1;,,+2-, + F,,,+l+,) for all I < i 5 177, 

d ,11+~ = ;(I-1 + Y,,,+I ), 

e 111 = ;(I-, + or, + I ), 

el - rl+l = ;h+IL + I;,,+l+i) for all I 5 i 5 tt2 - I, 

Ill+ I 

e=ej and N’ = c (1,. 
1-l 

It follows from condition (D2) that all of ci, and ri are integers. Furthermore, we can 

check from conditions (Dl ) and (D3) that 

d, > 0 for all i, and cl >el > > e,,, >O. 

Hence, there are a number of pairs 

of pure and basic configurations such that X c B. For such pairs (X, B), we put 

Y={PEB/f $2X}, 

and we consider these pairs (X, Y ), We call such pairs (X, Y) the G-p&s of {I;}. 



Theorem 3.3. Let (X, Y) hr u G-puir of’ CI squenw {ty.. . ,Q,,,+I } of’ in tcyrrs sutis- 

f.iimg conditions ( D 1 ) -( D3 ), LUK! put A = R/I (X ) + I( Y ). Then thr diugonul dt'~JtWS 

of’ tlw Artiniun Gorrnstrin crl~qehru A ure equul to the giwn integrrs I’,. 

In order to prove this theorem, we prepare a lemma. 

Notation. Let X = IJYL, B(d,,e,) be a pure configuration. Then obviously, there exist 

elements hi, Ci in k such that 

where ~(1 = 0 and I:, = dl + + dj for all 1 5 i 5 m. We put 

$1, = fI 
(S - hjZ) and h, = fi (y -c/z) 

/=!.,_,+I I=?,+, + I 

for all 1 5 i 5 m, where erN+l = 0. Note that deg y, = d, and degh, = e, - e,+l for all i. 

Furthermore, let B = B(d,e) be a basic configuration such that d> c:“, d,, e = el and 

X c B. Obviously, there exist elements hj (I!,,, + I <j 5 d) in k such that 

I(B(d,e))= fi(x - hiz), fi(y ~ c;z) . 

/=I /=I 

We put 

,>1 

<I,,,- I = 
ii 

(X - 17jZ) and d,,,+I =d ~ Edi. 

/=Im+l ,-I 

In the following lemma, we describe a set of minimal generators of a height three 

Artinian Gorenstein ideal which is constructed as the sum of the ideals of two geo- 

metrically linked pure configurations in P2. 

Lemma 3.4. With the notution us uhoce, liv put Y = {P E B 1 P 6 X}. 

(I ) I(X) is niinirnully genwutrd hj, (m + I ) musimil minors of’ tlzr m x (m + I ) 

mitri.y U = (u,, ) us ,fi,llou~s: 

U= 

(2) I(X ) + I( Y) is u Gorenstt~in idecrl of’ Iwi~ght the, minimully ~~meruted 

hj* (2~ + I) pfi#uns of’ the (212 + 1) x (2~ + 1) ultrrnutin~q mutrix M =(.fj,) u.s 



Proof. (1) The set of all maximal minors of U is 

So we show that I(X) is minimally generated by B. Let I be the ideal generated by B. 

We consider the monomial ideal ./ in li[.~,?.] generated by the (m + I ) monomials 

{~~r’~,~~“l~P~,~~l~~“;,...,~“~~~ ‘J,“~J~,.Y’~~~}. Since rl >ez> .. >e,,,>O and O<vi <Q< ... 

< i’,,, 3 it is easy to show that J is minimally generated by the (m + I) monomials 

above. Moreover, it follows by virtue of the proof of [4, Theorem 2.21 that I is a 

lifting of J (cf. [4, Definition 1.71 for the definition of “lifting”). Hence, I is the rad- 

ical ideal which is minimally gencratcd by B. And further, we can easily check that 

X = {P E P’ 1 F(P) = 0 for all F t I}. Thus, we get I = I(X). 

(2) First of all, it follows from [IO. Remarque 1.4; 6, Lemma I.31 that I(X) + I( Y) 

is a Gorenstein ideal of height three. 

Next, we note that Y is also a pure configuration. Hence similarly, it follows from 

( I ) that f(Y) is minimally generated by 

Let F, be the pfaffians of the alternating matrix obtained by eliminating the ith row 

and ith column from M for all I 5 i 5 2m + I. Then we can check that 

FI = .~/2.r/j . ({,I,+ I > Fz=1~l</3~~~~~,rr-l ,.... F,,, = h I . h,,,- I U,Il+ I , 

F rn+l =hlhz~..hn. 

F ,,,+2=qIh?~‘.h, I,..., Fz,,, = <I I . c//1,1- I /?,u. F2rr,+ I = .I/ I ~2 CJm. 

Thus, I(X) + I( Y) is generated by 5 U B’. So we check that B U B’ is a set of minimal 

generators of I(X) + !( Y ). We divide the proof of this claim into three cases. 

CUSCJ I: If F, E (BUB’\{F,})R for some I < i 5 nz, then F, E y,R+h,R. Hence, taking 

a point Q such that q;(Q) = I?,(Q) = 0, we get F,(Q) = 0. But obviously, F,(P)#O for 

all P E P’ such that <ii(P) = hi(P) = 0. This is a contradiction. 

Cuse 2: If F,,l+l t (BUB’\{F,,, + I ) )R. then F,,,+I t ~IR+~~,,,+~R. Hence, taking a point 

Q such that ~I(P)=.~/,,,-I(Q)=O, we get F,,,, l(Q) = 0. But obviously, F,,+I (P)#O for 

all P E P2 such that yl(P) = q,ll,I (I-‘) = 0. This is a contradiction. 

CUS<J 3: If F,,r+l+i t (BUB’\{F,,,. l+,})R for some 1 <i<m, then F,p,+l+i E y!+lR+ 

h,R. Hence, taking a point Q such that q,, i(Q) = /7,(Q) = 0, we get Fnl+~+,(Q) = 0. 

But obviously, F,~,+l+,(P)#O for all P E P’ such that q,+i(P)=h,(P)=O. This is a 

contradiction. 0 



Proof of Theorem 3.3. We prove this theorem with the notation introduced above. 

From the proof of Lemma 3.4. the degrees of {F,} are as follows: 

degFI=d~+d3+.‘.+cl,,,+,. degF2=(w -e~)+di+~~~+d,,_,. 

degF;=(cl, -c3)+d4+...+d,,,+, ,..., deg F,,, = C~I - e,,,) + d,,,+~. 

deg F,,,, I = Ed 3 deg F,,,,? = cl, + e:, deg F,,,+j = dl + dz + ~3,. . 

deg Fz,,, = d 1 + + d,,,- I + errl, deg Fl,,,+, = (11 + d2 + . + d,,,. 

For convenience, we put 

G, = 
{ 

Fz,ri+z~, for all 1 <i<m+ I, 

F,_ c,lr+lj for all n1+2<i<2nz+ 1 

Hence. from the definitions of d, and e,, we can easily check that 

deg G, = f 1 I’, = firI + + r-I + I;_] + + rllrr+, ) 

i+ 

for all l 5 i 5 2tll + I. Thus, from condition (Dl ) of sequence {,;}. 

de&G, 5 degG?I ... 5 degGz,,,+t. 

Next, we show that s(A) = Cfz;’ I’;. Note that s(A) =cr(il) + 2 (this follows, for 

example. from [3, p. 3691). Furthermore, it follows from [6, Theorem 2.1(3)] and 

Lemma 2.2(2) that 

o(A)=rr(XuY)- l=n(B(d,e))- l=d+e-2. 

Hence, WC get 

Now, let {I.{, , I&,+, } be the diagonal degrees of A. Then by noting that deg Gt 5 

deg Gz 5 < deg Gz,~,_~, it follows from conditions (BEI ) and (BE2) that 

t.,! = s( A ) - 2 deg G,, i.e., I.: = c 7, ~ c y, = r;. 
/=I /iI 

This completes the proof. 0 

Example 3.5. Diesel described in [3, Example 3.71 all the possible diagonal degrees 

among all Artinian Gorenstein algebras with the Hilbert function T = (1.3.6, 

IO, 12. 12, IO. 6,3, 1,O.. ), i.e., all the sequences of integers satisfying conditions (D 1 )- 
(D3) which determine T: 

{4.4.4}: {4,4,4.2.-2); {4.4,4,0.0}; {4.4,4,2,2,-2,-2); 

{4.4,4,2,0,0,-2); {4.4,4.2,2,0,0,-2.-2). 



Here using our construction, for example, we give an example of an Artinian Gorenstein 

algebra with the diagonal degrees {4,4.4,2,0,0, -2). We put, as in Definition 3.2, 

d, = I, dz=2, dj=l, riJ=3, 

rt = 5, e;l=3, e3 = 1, d=7, and e=5. 

And, as a G-pair (X, Y) of {4,4,4,2,0,0. -2}, we take the following two pure con- 

figurationsX=B(l,5)UB(2,3)UB(I,l) and Y=B(3,5)UB(l,4)UB(2,2) such that 

X u Y =B(7,5): 

0.0.00.Y 

o...... 

000..*~ 

ooo~o*~ 

x0 0 0 0.. . 

Then it follows from Theorem 3.3 that A = R;,(X) + I(Y) is an Artinian Gorenstein 

algebra with the diagonal degrees { 4,4,4,2,0,0, -2). 

4. An application 

Definition 4.1 (cf. Diesel 131). Let { ~1,. . , /‘?,,,+I } be a sequence of integers satisfying 

the conditions (Dl))(D3). We say that {I.,} is saturated if 

I.,+~2,)l+3_,=2 for all 2<i<:nr+l. 

Definition 4.2 (cf. Watanabe [ 121). Let A = @:: (, A, be an Artinian graded algebra. 

We say that A has the n~k .StmIc~~ ptwpwt~~ it 

(i) the Hilbert function of A is unimodal, i.e., there exists an integer ,j such that 

H(A,O)<H(A,l)< ... </I(A,j)>H(A,,j + l)> ... >H(A,c), and 

(ii) there exists an element I E Al such that the multiplication 1 :A; 4 A,,, defined 

by ,f’ H If’ is either injective or surjective for all i > 0. 

In this case, we say that the pair (./I, /) has the weak Stanley property. 

Theorem 4.3. Let (X, Y ) hr LI G-p/iv of’ u .ctrtwwtcd SCI~I~~I~C { ~1, , r2,,,+ 1 }, mcl put 

A = R/I(X) + I( Y ). Fwtl~wnort. put n = o(X) --- 1, h = a(X U Y) ~ a(X) - 1 md 

c = o(X u Y) - 2. Then A lus t/w \~wk Strrnlq~ property und thr Hilbcrt ~fimction of 

A is rrcorrred .f>or?l tlw Hilhcrt firwtion of’X us ftilhr,s: 

1 

H(X, i) for trll 0 6 i 5 a ~ I, 

H(A,i) = 1x1 ‘f. . OF (I II a<i<h, 

H(X, c - i) ,fbr (111 b + I 5 i < c. 

i.e., H(A)=(l,h, ,..., h,,_l$ ,..., /XI,~,,_I ,..., h,,l,O . . . . ). uhreh,=H(X.i). 

We need the following lemma to prove Theorem 4.3. 



Lemma 4.4. Lrt X = U:“, B(d,, e, ) hc (1 puw cor~figurcition. 

1~hr1~~ zy) = 0 und r, = d, + + d,. 

(2) CT(X) = Max{r, + P, ~ 1 1 1 5 i 5 M}. 

Proof. ( 1) We use induction on NI. For the case of nz = I, our assertion follows from 

Lemma 2.2( I ). Let m > 1. It follows from Lemma 3.4( 1) that 

1 (g B(k)) = (/I, h,,,, <J/I hz h,,,. (/I (J2h.i . h,>,. . . . , 

Hence, we have 

1 &k&6)) +I(B(d,,,.e,,,))=((/I ..,,/,,I~I,H,li,h,,,). 

Thus, we obtain the following exact sequence: 

0 - R/I(X)+R/l rfi B(d,,e,)\ +Rjf(B(d,,,.e,,,)) 

- &(<JI ” CJw 

Therefore, we get 

F(X, 2) = F R/I 

\;=I / 

I . U,,l. hm 1 - 0. 

(gB(d,,~)) 2) +F(R/I(B(~ ,,,, ~,)).i.) 

mF(R.I(cJl . qlnr- I 3 (Jmr h,, 1,; ). 

On the other hand, by the assumption of induction, 

Also since {P E P’ / ~JI .I/,,,+I(P) = g,,,(P) = h,,,(P) = 0) = 4, it follows that {<//I 

Y,,i- I . U,?!. h,,,} is a homogeneous regular sequence. Hence by using Lemma 2.2( 1 ), it 

follows that 



Thus, we get the equality of (1 ) 

(2) It follows from (I ) that 

,,I 111 

F(X,i.)= Ci’,~‘F(B(tl,.r,).i), i.e., H(X,,j)= CHiB(d,,r,),,j- u_~). 
ITI /=I 

Here we put 

r(i) = Min{,j 1 H(B(d;.r,),j ~ ~‘,_l ) = lB(d,.e,)1} for all I <i 5 m. 

Then from Lemmas 2.1(4) and 2.2(2), we see that 

T(i)- r,_l =rr(B(d,.e;))p I =ti, +e, -2, i.e., r(i)=e, +r, -2. 

Thus, we can check that 

1 

J,, 

Min .j 1 H(X.j) = c IB(d,.e,)l = Max{e, -t 13; - 2 / 1 5 i 5 m}. 
!=I 1 

Therefore, from Lemma 2.1(4), we get the equality of (2). 0 

Proof of Theorem 4.3. If 20(X) 5 o(X U I.), then our assertion follows from [7, 

Lemmas 3.1 and 3.21. So we show that 2a(X)s(~(X U Y). Since {Y;} is saturated, 

we have d, = 1 for all I 5 i 5 m, i.e., I’, = i. Hence from el >e2 > >e ,,,, it follows 

that e, + c, - 1 > e,+l + r,+l ~ I. Thus, from Lemma 4.4(2) and the definition of el, 

we have 

Furthermore, from Lemma 2.2( 2 

/ l!, 

) and Definition 3.2, we have 

Also, we see that I;,,+, > 0. because I;,,+! 2 I;,,-? and r,,,+, + 1;,,+2 = 2. Thus, it follows 

that a(Xu Y)-2rr(X)=r,,,+, - ILO. 0 

Proof. (a) 3 (b): It follows from [3, Theorem 3.21 that there is a unique satu- 

rated sequence {I-,} which determine h. We take a G-pair (X, Y) of {r,}, and put 



A = R/I(X) + I(Y). We note that the Hilbert function of A is equal to h. Hence, it 

follows from Theorem 4.3 that h, = h,._, for all 0 5 i < [c/2]. Furthermore, it follows 

from Theorem 4.3 that (A. I) has the weak Stanley property, that is, (ho,hi ~ /~,h2 - 

hr,. ,h,, 21 - h[,. ~1-1.0,. .) is the Hilbert function of A:‘IA. 

(b) + (a) follows. for example, from [6, Theorem 3.31. 0 

Remark 4.6. In the proof of Theorem 4.5, we give an algebraic explanation of what 

is behind Stanley’s formulation (in terms of first difference) for Hilbert function. That 

is, for any Artinian Gorenstein algebra of codimension three, there exists an Artinian 

Gorenstein algebra with the weak Stanley property which has the same Hilbert function. 

Therefore, it is natural to ask, in view of Stanley’s formulation, a question whether 

every Artinian Gorenstein algebra of codimension three has the weak Stanley property 

(cf. [9,12,13]). 
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