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Abstract

In this paper. using a standard fact in linkage theory, we give a new construction of Artinian
Gorenstein algebras achieving all possible sets of graded Betti numbers for codimension three.
Furthermore, as an application, we give another proof of Stanley’s wcll-known characterization
theorem for the Hilbert functions of codimension three Artinian Gorenstein algebras. (© 1999
Elsevier Science B.V. All rights reserved.

1991 Math. Subj. Cluss.: 13D40; 13H10

i. Introduction

There are some well-known results on the problem of constructing Artinian Goren-
stein algebras having an assigned set of graded Betti numbers which are possible
tor some Artinian Gorenstein algebra of codimension three. We recall some of these
results. An explicit construction can be found in the paper by Hcrzog ct al. [8,
p. 63] and the paper by Diesel [3, Proposition 3.1]. Furthermore, recently, Geramita
and Migliore [S, Theorem 2.1] showed that any admissible set of graded Betti numbers
in fact occur for a reduced set of points in P*. The starting point of these constructions
1s the well-known structure theorem of Buchsbaum and Eisenbud [1, Theorem 2.1] for
Gorenstein ideals of height three.

It is a standard fact in linkage theory [10, Remarque 1.4] that the sum of two ge-
ometrically linked Cohen—Macaulay ideals is a Gorenstein ideal of codimension one
greater. In this paper, using this idea, we give a new construction of Artinian Goren-
stein algebras achieving all possible scts of graded Betti numbers for codimension
threec. That is, such Artinian Gorenstein algebras can be obtained as thc sum of the
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ideals of two geometrically linked finite sets of points in P> (Theorem 3.3). Further-
more, as an application of this construction, we show that for any Artinian Gorenstein
algebra of codimension three, there exists an Artinian Gorenstein algebra with the
weak Stanley property which has the same Hilbert function (Theorem 4.3 and Remark
4.6). Consequently, we give another proof of the well-known theorem of Stanley [11,
Theorem 4.2] which gave a characterization of the Hilbert functions of codimension
three Artinian Gorenstein algebras (Theorem 4.5).

2. Preliminaries

Throughout this paper, we assume that & is always an infinite field. Let 4 be a stan-
dard graded algebra over a ficld 4. that is, 4 is a graded ring €D, 4; satisfying Aq =#,
A=k[A,] and dim; 4 <>o. The Hilbert function of A is defined by H(A,i)=dimy A4;
for all i>0, and the Hilhert series of 4 is defined by F(A,2)= Zi>0 H(A.i)4 €
Z[[/]]. Then it is well known that we can write F(4.4) in the form

h o+ +hot
Fla.) =22 '(lf;)[/ .

for certain integers hg, hy,....h. satistying 3. #; # 0 and h, # 0. where d is the Krull-
dimension of 4. We put a(4)=c¢ + . In particular, it follows that if 4 is Artinian,
then a(4)=Min{i|4;=(0)}.

First, we recall some basic facts on the Hilbert functions of finite sets of points in P”.
Let X be a finite set of points in P and let /(X)C R = k[xp,x1,...,x,] be the homo-
geneous ideal of X. The Hilbert function of X is defined by H(X,i)=H(R/I(X ), i)
for all />0, the Hilbert series of X 1is defined by F(X,2)=F(R/I(X),/) and put
a(X)=0a(R/I(X)). Now, since 4=R/I(X)= P,.,4; i3 a one-dimensional Cohen-
Macaulay graded algebra over an infinite field, there exists an element / € 4, which
is a non-zero divisor. Using this fact, it is casy to show the following (see {2], for
example).

Lemma 2.1. Let X be « finite set of points in P
(1) HIX, D <H(X,i + 1) for ull i 0.
) If HX,i + VY =H(X. i), then H(X.i +2)=H(X,i+1).
(3) H(X,i)=|X| for all i3 0. where |X| denotes the number of points in X.
(4) ¢(X)=Min{i| H(X.i)=|X|} -+ 1.

If {X)Y=(F,..., F,) for some /7, € Ry, (1 <i<n), then X is said to be complete
intersection of type (d|,....d,). The following is also a well-known fact (see [2,11]).

Lemma 2.2. Ler X be a complete intersection of type (dy,....d,).
(1) FOXG 2= (T (- 20/ - 2y,
2)yoX)=d|+---+d,—(n—1)
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Next, we recall some well-known facts on the graded Betti numbers of codimension
three Gorenstein algebras.

When / is a Gorenstein homogeneous ideal of height three in R =k[xp.xj.....x,]. it
is well known that a minimal graded free resolution of 4= R/I has the form

2m+1 2m+1

0—R(—s)— @ R(~pi)— D R(—g:)— R(0)— 4 —0.
i—1 i=1

where we always assume that ¢, < -+ <@,y and py > --- > py,.;. The set of
integers
{611-~--J12m+1lpl ~~~~~ PZmHZS‘}

is uniquely determined by A, which we call the graded Betti mumbers of A. In particu-
lar, we put s(4)=s. Furthermore, we define a new sequence {r|....,r,41} of integers,
where

ri=pi—q; forall | <i<2m+41.

We call these integers the diagonal degrees of A (cf. [1,3]).
It follows from [1, p. 466] that the diagonal degrees of 4 completely determine the
graded Betti numbers of A, that is,
2m+1

(BEI) s:§:m
=1

(BE2)  gi=3(s—m)=1) 7,
j#1
(BE3) pi=s—qi=1(s+r).
Furthermore, it is well known that the diagonal degrees {r;} of A satisfy the following
three conditions (see [3, Proposition 3.1], for example):
(DI) FIZF 2 Z g,
(D2) the integers r; are all even or all odd,
(D3) >0, ro a1 >0, gy, >0, P >0,

Conversely, any sequence of integers satisfying the conditions (D1)-(D3) is the
diagonal degrees of a height three Gorenstein ideal. This well-known fact follows, for
example. from [3, Proposition 3.1: 5, Theorem 2.1; 8, Section 5].

3. The construction

We prepare the following notation and definitions to state the Main Theorem 3.3 of
this section.

Let R=Ak[x, y,z] be the homogeneous coordinate ring of P?. Here we consider the
following finite sets of points which are in position of lattice points in P2.
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Definition 3.1. (1) A finite set X of points in P? is called a basic configuration of
type (d.e) if there exist distinct clements b;.c; in & such that

d ¢
1x)y={ ]~ t2). TJtr =2
Jj=1 j=1

We write X = B(d,e). Obviously, B(d,e) is complete intersection and |B(d,e)| =de.

(2) A finite set X of points in P? is called a pure configuration if there exist
finite basic configurations B(di.e)),..., B(d .y, en). where e > --- >e¢,, which satisfy
the following three conditions:

(i) B(d;,e;) N\ B(d;,e;)= ¢ if i#),

(i) X =B(di.e))U - U B(dpen),

(iil) @(B(d;.ei)) D @(B(d;y, e, 1)) forall 1 <i<m—1, where ¢: P*\{(1,0,0)} — P!

is the map defined by sending the point (x, v,z) to the point (y,z).

In this case, we write X = /-, B(d,e;).

Definition 3.2. Let {r...., rame1} be a sequence of integers satisfying conditions
(D1)—(D3). Then we define the following integers:

di = %(rm+27i + P tai) for all 1<i<m,

dm+] - %(I‘] + Pt )~

€m — %("l + Fam gl s

1 .
€ — €y — §(rm+l—[ +"m+l+i) for all 1 <i<im— 1,

n+1

e=¢ and d= Zd,‘.

i=1

[t follows from condition (D2) that all of ¢; and ¢; are integers. Furthermore, we can
check from conditions (D1) and (D3) that

d;>0 for all i, and ¢)>e2> - >e,>0.

Hence, there are a number of pairs

(X = U B(d.e;), B=B(d.e ))

=1

of pure and basic configurations such that X C B. For such pairs (X, B), we put
Y={PeB|P<ZX},

and we consider these pairs (X, Y). We call such pairs (X,Y) the G-pairs of {r;}.
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Theorem 3.3. Ler (X,Y) be a G-pair of a sequence {ri,....ramy 1} 0f integers satis-
fring conditions (D1)—(D3), and put A=R/I(X )+ [(Y). Then the diugonal degrees
of the Artinian Gorenstein algebra A are equal to the given integers r;.

In order to prove this theorem, we prepare a lemma.

Notation. Let X = |J|" | B(d;.e;) be a pure configuration. Then obviously, there exist
elements b;, ¢; in k such that

1Bdien=1{ [ —b2) [Tr—ca)],
Jj=1

J=tici+l

where tg=0 and v, =d| +---+d; for all 1 <i/<m. We put

gi= H (x —b;z) and A= H (v —c¢jz)

j=ti—1+1 J=eivi+1

for all 1 <i<m, where e, =0. Note that degy; =d; and degh; =¢; — e;4; for all i.
Furthermore, let B = B(d,¢) be a basic configuration such that d > ", d;, ¢ =e; and
X C B. Obviously, there exist elements b; (v, + 1 < <d) in k such that

i=

/ d ¢ \
I(B(d,e))= H(x —bhjz), H(y —¢z) ).
=1 i=1
We put
d m
Ym~1 = H (x — b/:) and dy1=d — Z d;.
j=tm+1 i=1

In the following lemma, we describe a set of minimal generators of a height three
Artinian Gorenstein ideal which is constructed as the sum of the ideals of two geo-
metrically linked pure configurations in P2,

Lemma 3.4. With the notation as above, we put Y ={P € B|P ¢ X }.
(1) 1(X) is minimally generated by (m + 1) maximal minors of the mx (m+ 1)
matrix U = (uy;) as follows:

g1 hi

gz ho O

O Gt

(2) I(X) + (Y)Y is a Gorenstein ideal of height three, minimally generated
by 2m + 1) pfaffians of the (2m + 1) x (2m + 1) alternating matrix M =(fi;) as
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follows: For i <j,

uj; if 1<i<m and j=m+¢t for 1 <t<m+ 1,
fi=94 gnr I i=m+1and j=2m+ 1,
0 otherwise.

Proof. (1) The set of all maximal minors of U is

B={hhshu, gihy - hu grg2hz-hy. ... U GmFms G192 Gm )

So we show that /(X) is minimally generated by B. Let / be the ideal generated by B.
We consider the monomial ideal J in &[x,v] generated by the (m + 1) monomials
{yer,xt oy xt s o xt y x™ ) Since ey >ex> - >e, >0 and O<vy <tp < -
<, it is easy to show that J is minimally generated by the (m 4 1) monomials
above. Moreover, it follows by virtue of the proof of [4, Theorem 2.2] that [ is a
lifting of J (cf. [4, Definition 1.7] for the definition of “lifting”). Hence, / is the rad-
ical ideal which is minimally gencrated by B. And further, we can easily check that
X={P e P F(P)=0 forall F &/} Thus, we get [=/(X).

(2) First of all, it follows from [10, Remarque 1.4; 6, Lemma 1.3] that /(X )+ I(Y)
is a Gorenstein ideal of height three.

Next, we note that Y is also a pure configuration. Hence similarly, it follows from
(1) that /(Y) is minimally generated by

B' = {hth T hnh hl T hmfl.(/rn& 1s hl s hmfl.(/mgmﬂ»lvu )
Rigs - Gmris G293 Gmi1 }-

Let F; be the pfaffians of the alternating matrix obtained by eliminating the ith row
and ith column from M for all 1 <i<2m + 1. Then we can check that

Fl =4203 - Ym+1s F?_:hl.(/}"’.(//n'] ~~~~~ Fm:hl "‘hmfl.‘/nH»]s
Fm+l :hth vt ‘hm-,
Fm+2 = .‘/th T hma- EE) F?_m =qy- - .f/mflhuh F2m+l =142 Ym-

Thus, /(X)+/(Y) is generated by BUB’. So we check that BUB’ is a set of minimal
generators of /(X )+ /(Y). We divide the proot of this claim into three cases.

Cuse 1: If F; € (BUB’\{F;})R for some 1 <i<m. then F; € y;R+h;R. Hence, taking
a point Q such that g,(Q)=h,(Q)=0, we get F;,(Q)=0. But obviously, Fi(P)#0 for
all P € P? such that g,(P)=h;(P)=0. This is a contradiction.

Case 2: If Fop1 € (BUB'\{F,.,1})R, then F,1\ € g1R+¢n+ R. Hence, taking a point
O such that ¢,(Q) = gn-1(Q)=0, we get F,..1(Q)=0. But obviously, Foui1(P)#£0 for
all P € P? such that ¢(P)= ¢gu+1(P)=0. This is a contradiction.

Case 3: If Fry14i € (BUBN{F,, 14 })R for some | <i<m, then F, 1y € iR+
h:R. Hence, taking a point @ such that g, ,(Q)=h(Q)=0, we get F, ., (Q)=0.
But obviously, Fyi+i(P)#£0 for all P € P* such that g, ((P)=/h;(P)=0. This is a
contradiction. [J
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Proof of Theorem 3.3. We prove this theorem with the notation introduced above.
From the proof of Lemma 3.4, the degrees of {F;} are as follows:

degF\=d>y+ds+ - +duys. degFry=(ey —ex) +ds+ - +dp..

degFSZ(()l - 63) +d-l 4+ +dm+la~~w degFm:(el —em) +dm+l-

degE)1+l =€, degE:z+2:(il + ez, degE11+3:dl +d2+€3,...~

dengm :dl + -+ dmfl + e, degF2r71+l :dl + dZ +---+ dm-
For convenience, we put

G Foperoy forall 1 <i<m+ 1,

! Fi (my1, forall m+2<i<2m+1.
Hence, from the definitions of d; and ¢;, we can easily check that
1 1
deg G, = 2 Zr/- - E(i'l toe o e e )
J#

for all | <i<2m + 1. Thus, from condition (D1) of sequence {r;}.

deg G < deg G> < - -+ < deg Gapyr-

Next, we show that s(4)= Z;Z']T] r;. Note that s(4)=a(A) + 2 (this follows, for

i

example, from [3, p. 369]). Furthermore, it follows from [6, Theorem 2.1(3)] and
Lemma 2.2(2) that

g A)=a(X UY)—-1=0a(B(d,e))— 1 =d+e—12.

Hence, we get

m+1 m+1 m—1 2m+1
S(A):d+€: {Zd1}+01_ {Zd{}‘F{Z(C’;EHI)}—F@m Zl'l‘.
i=1 i=1 i=1

i1
Now, let {r..... 51 b be the diagonal degrees of 4. Then by noting that deg G| <
deg G» < -+ < deg Gaysy, 1t follows from conditions (BE1) and (BE2) that

2m+1
r=s(4)—2deg G;, ie. ri= Z ¥ — Z rp=ri.
j=1 i
This completes the proof. [

Example 3.5. Diesel described in [3, Example 3.7] all the possible diagonal degrees
among all Artinian Gorenstein algebras with the Hilbert function 7 =(I,3,6,
10,12,12,10, 6,3,1,0....), i.e., all the sequenees of integers satisfying conditions (D1)—
(D3) which determine 7

{4.4.4); {4,4,4.2,-2); {4.4,4,0.0}; {4.4,4,2,2, -2, -2}
{4.4.4.2,0,0,—2}; {4.4,4,2,2,0,0.-2. -2}



52 T. Harima !l Journal of Pure and Applied Algebra 135 (1999) 45-56

Here using our construction, for example, we give an example of an Artinian Gorenstein
algebra with the diagonal degrees {4,4,4.2,0,0,—2}. We put, as in Definition 3.2,
d|:1, d2:2. d3:1, (/4:3,
e1=5 =3 e=1, d=7, and e=35.
And, as a G-pair (X,Y) of {4,4,4,2,0,0,—2}, we take the following two pure con-

figurations X = B(1,5) U B(2,3)UB(1,1) and Y =B(3,5)U B(1,4) U B(2,2) such that
XUY=B(7,5):

O e e o e o oY)
O ® e o e e ®
0O 0O 0O e e e e
0O 0O 0O e e e e
X o o 0o 0o e e e

Then it follows from Theorem 3.3 that 4 =R/[(X )+ I(Y) is an Artinian Gorenstein
algebra with the diagonal degrees {4,4.4,2,0,0,—2}.

4. An application

Definition 4.1 (cf. Diesel [3]). Let {r,....r2u11} be a sequence of integers satisfying
the conditions (D1)—(D3). We say that {s;} is saturated if

Fitrmeso=2 forall 2<i<m+ 1.
Definition 4.2 (cf. Watanabe [12]). Let 4= D, ,4; be an Artinian graded algebra.
We say that 4 has the weak Stanfey property if
(i) the Hilbert function of 4 is unimodal, i.e., there exists an integer j such that
HA0)<HA 1)< - <H(Aj)>H(4.j+1)2 --- 2 H(4,c), and
(ii) there exists an element / € 4, such that the multiplication /:A4; — 4,4, defined
by f + If is either injective or surjective for all i >0.
In this case, we say that the pair (4,/) has the weak Stanley property.

Theorem 4.3. Let (X, Y) be a G-puir of u saturated sequence {ry,... ¢ a1}, and put
A=R/I(X) + I(Y). Furthermore, put a=o(X) -1, b=a(X UY) —a(X) — 1 and
c=0(XUY)—2 Then A has the weak Stanley property and the Hilbert function of
A is recovered from the Hilbert function of X as follows:

H(X, i) for all 0<i<a—1,
H(A4,i)y= ¢ |X] for all a<i<b,
H(X,c—1i) forall b+1<i<c,

e, HAY=(Lhyy oo bt X oo AX By 1,000 ), where by = H(X.0).

We need the following lemma to prove Theorem 4.3.
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Lemma 4.4. Ler X = JI_, B(d;.e;) be u pure configuration.

i

m

N U e A A
() FX)=Y 7 TV

i=1
where vo=0 und vi=d, +---+d,.

\ avlio o 111
) Maxe; + o 1)t

IN
IA

9} H
2 i<m}.

—

~—
Q)

-

Proof. (1) We use induction on m. For the case of m =1, our assertion follows from
Lemma 2.2(1). Let m>1. It follows from Lemma 3.4(1) that

m—1
! (U B(d,-,e,-)> =(hy - hpgrha by grgahs -

i=1

g .‘/mflhmflhm- g1 Ym—1 )

Hence, we have

m—1
! (U B(di*ei )) + [(B(d)m em)) = ([]l o lm—1sYms hm )

i=1
Thus, we obtain the following exact sequence:

m-— |
0 — R/[-(X) - R/[ U B(d,‘, €; )) b R/j(B(dnh em))
=1

ke R/((/l o .‘]mfl‘.(f]m«hm)" 0.

Therefore, we get

m—1
FX,2)=F (R/I (U B(d,.e; )) /> + FRI(B(dyen))s )

i=1

*F(R/((/I =12 Yms hm )a A )

On the other hand, by the assumption of induction,

m—1 m—1 . e
F (R/l (U B(di,e,)>,}_> _ ZZ,»H([ (/i j(j)} /. ).

i=] i=1

Also since {P € P*| g1 gm_1(P)=ygn(P)=hu(P)=0}=¢, it follows that {g, ---
Gm—1.dm- P} 1 a homogeneous regular sequence. Hence by using Lemma 2.2(1), it
follows that

F(R,/”[(B(d,,,, €m )* /) - F(R,/(.‘/l e .‘lmfla.‘/mahm)v /)

(= A=Ay (=2 = (= A
A= (1—=2)
2En=1 (1 — Jdmy(1 — Aem)

(1—2)% ’
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Thus, we get the equality of (1).
(2) It follows from (1) that

m n

F(X7)=> i F(B(dier). 7). e, HIX.j)= > H(B(die;),j = viy),

i=1 i=1

Here we put

()y=Min{j | H(B(die).j— vi_1)=1B(d;.e))|} forall | <i<m.
Then from Lemmas 2.1(4) and 2.2(2), we sce that

i) —vi_1=0(B(di.e)y—l=d, +e¢—2, e, t()=e¢ +1v;, —2.

Thus, we can check that

Min {/ | H(X,j)= Z |B(d,-.e,-)} =Max{e, +v; — 2|1 <i<m}.

i=1

Therefore, from Lemma 2.1(4), we get the equality of (2). [

Proof of Theorem 4.3. If 26(X)<a(X U Y), then our assertion follows from [7,
Lemmas 3.1 and 3.2]. So we show that 2a(X)<o(X U Y). Since {r;} is saturated,
we have d; =1 for all 1 <i<m, ie., v;=i. Hence from ¢ >e>;> --- >e¢,, it follows
that ¢; +v; — 1 >¢;1| + v;4; — 1. Thus, from Lemma 4.4(2) and the definition of e,
we have

I
a(X)=e +u — 1=¢ =3 Z .

£m+1

Furthermore, from Lemma 2.2(2) and Definition 3.2, we have

m- 1 2m+1
X UY)=d+e—1= (Zd,-) teop - 1= (Z ;) - 1.
i=] i=1

Also, we see that r,, | >0, because 1 > #y-2 and #y41 + #p2 =2, Thus, it follows
that (X U Y) = 20(X)=#p — 1 20, O

Theorem 4.5 (cf. Stanley [11, Theorem 4.2]). Let h=(hg,h1,....h.0,...) be a se-
quence of non-negative integers satisfying hy =3. Then the following conditions are
equivalent:
(a) there exists an Artinian Gorenstein graded algebra with the Hilbert function
I
(b) hi=he_; for all 0<i<[c¢/2] and the sequence (ho by — ho hy — hy, .. e —
hea)—1, 0,...) is the Hilbert function of an Artinian graded alyebra.

Proof. (a) = (b): It follows from [3, Theorem 3.2] that there is a unique satu-
rated sequence {r;} which determine 4. We take a G-pair (X,Y) of {r;}, and put
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A=R/I(X)+ I(Y). We note that the Hilbert function of 4 is equal to 4. Hence, it
follows from Theorem 4.3 that h; =h._; for all 0 <i<[c¢/2]. Furthermore, it follows
from Theorem 4.3 that (4,/) has the weak Stanley property, that is, (4, b, — hy, by —
My, hpeoy = hieo—1.0,..0) is the Hilbert function of 4//A4.

(b) = (a) follows. for example, from [6, Theorem 3.3]. [

Remark 4.6. In the proof of Theorem 4.5, we give an algebraic explanation of what
is behind Stanley’s formulation (in terms of first difference) for Hilbert function. That
is, for any Artinian Gorenstein algebra of codimension three, there exists an Artinian
Gorenstein algebra with the weak Stanley property which has the same Hilbert function.
Therefore, it is natural to ask, in view of Stanley’s formulation, a question whether
every Artinian Gorenstein algebra of codimension three has the weak Stanley property
(cf. [9,12,13]).
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